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Abstract

A plane qP-wave (quasi-P-wave) is assumed to be incident at a corrugated interface between two dissimilar pre-stressed

elastic solid half-spaces. Using Rayleigh’s method of approximation, the reflection and transmission coefficients have been

presented for the first-order approximation of the corrugation. These coefficients are obtained in closed form for a

corrugated interface of periodic shape. We found that these coefficients depend on the angle of incidence, frequency of the

incident wave, initial stresses and incremental elastic properties of the half-spaces. The coefficients corresponding to

irregularly reflected and transmitted waves are found to be proportional to the amplitude of the corrugated interface and

are also influenced significantly by the initial stresses of the half-spaces. Some more results including the results of Sidhu

and Singh [Reflection of P and SV-waves at the free surface of a prestressed elastic half-space, Journal of the Acoustical

Society of America 76(2) (1984) 594–598] have been deduced as particular cases from the present problem.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of elastic wave propagation finds numerous applications in geophysics and seismology. They are
of great help in exploration of the internal composition of the Earth layers and their properties. Seismic waves
originating from the sources are to travel through different layers of the Earth and the velocities of these waves
depend on the characteristics of the layer material through which they pass. While traveling through one layer
to another adjacent layer, they undergo reflection and transmission at the interface between the layers. The
reflection and transmission phenomenon of elastic waves not only depend on the layers’ properties and angle
of incidence but also depend on the shape of the interface. It is believed that the interface between any two
adjacent layers of the Earth is not perfectly plane, but it is undulated in nature. Thus, while investigating the
problems of reflection and transmission of elastic waves from such interfaces, the geometry of the interface
should be taken into account.

A number of problems of reflection and transmission of elastic waves from plane boundaries have been
investigated in the past, but a few problems have been attempted at the corrugated interface. For the first time,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Rayleigh [1] discussed a problem of reflection and transmission of waves from an undulated boundary surface.
He obtained reflection and refraction coefficients of sound and light waves incident upon a corrugated
boundary surface. In his method, the amplitude and slope of the corrugated interface are assumed to be small
and the expression of the corrugated interface defining the boundary surface is expanded into Fourier series
and the unknown coefficients in the boundary conditions are determined to the nth order of approximation in
terms of small parameter characteristics of the corrugated interface. Later on, many researchers applied his
method in various other fields to explain the reflection and transmission phenomena of waves at an irregular
boundary surface. Some problems of reflection and refraction of elastic waves at a corrugated boundary
surface have been studied using different techniques. Asano [2,3], Abubakar [4], Gupta [5], Lavy and
Deresiewicz [6], Tomar and his coworkers [7–10] are some notable references.

Biot [11,12] gave the equations of wave motion and constitutive relations for a pre-stressed elastic medium
and investigated the possibility of wave propagation. Since then many researchers have attempted a number of
problems in the pre-stressed media. Babich [13] discussed the propagation of surface waves in a pre-stressed
medium and showed that the velocity of surface waves varies linearly with the initial stress for a fixed
frequency. Dowaikh and Ogden [14] studied the problem of interfacial (Stoneley) waves along the boundary
between two half-spaces of pre-stressed incompressible isotropic elastic materials. They derived the secular
equation and obtained a condition for the existence of a unique interfacial wave. Ogden and Sotiropoulos [15]
discussed the problem of interfacial waves along the plane boundary between a pre-stressed incompressible
elastic solid half-space and a pre-stressed incompressible elastic solid layer of uniform thickness. They derived
the dispersion equation and obtained the conditions on the pre-strain, pre-stress and material parameters that
ensure the existence of a unique interfacial wave speed at low and high frequencies. Khurana and Vashisth [16]
analyzed a problem of Love wave propagation in a pre-stressed elastic layer overlying a pre-stressed
poroelastic solid half-space. The interface between the layer and the half-space is considered to be loosely
bonded, in general. They derived the frequency equation for Love wave propagation and studied the effects of
the looseness of the interface and the initial stress on the phase velocity of Love waves. Pal and
Chattopadhyay [17] discussed a problem of reflection of plane harmonic waves from a free boundary of a
homogeneous, pre-stressed, orthotropic elastic half-space. It is shown that under certain conditions an
incident pure mode of a P or SV-wave in a specific direction does not give rise to a pure mode of a reflected
P-wave. Either there is reflection of superposition of P and SV-waves or an SV-wave only. Chattopadhyay
et al. [18] discussed wave propagation in a pre-stressed elastic medium and studied a problem of reflection of P

and SV waves at a free surface of an initially stressed elastic half-space. Norris [19] pointed out that
Chattopadhyay et al. [18] assumed a form of solution which does not satisfy their equations of motion and the
results obtained by them are in doubt. Norris [19] re-investigated the propagation of plane waves in a
homogeneous pre-stressed elastic medium having an initial axial stress in two orthogonal directions. He
showed that pure longitudinal and shear waves can propagate only in certain specific directions, which are
defined. Sidhu and Singh [20] also commented on the paper by Chattopadhyay et al. [18] and stated that their
results are not acceptable because the method of potentials used in the paper is not acceptable for pre-stressed
media. Later, Sidhu and Singh [21] investigated the propagation of plane waves in a pre-stressed elastic solid
with incremental elastic coefficients possessing orthotropic symmetry. They showed that two types of plane
waves called a quasi-P wave and a quasi-S wave can exist and their velocities depend on the angle of
propagation. They have also investigated the problem of reflection of P and SV-waves at the free surface of a
pre-stressed elastic half-space. Subsequently, Sidhu and Singh [22] obtained a condition on the incremental
elastic constants for the existence of real values of the phase velocity of quasi-S plane waves in a pre-stressed
elastic solid. It is also shown that if this condition is violated, the quasi-S waves do not exist for a certain range
of the angle of propagation. The propagation of elastic waves in an infinite pre-stressed elastic solid medium
has also been investigated by Dahlen [23] and Tolstoy [24].

In this paper, we have attempted a problem of reflection and transmission of a quasi-P wave (called qP-wave)
incident obliquely at a corrugated interface between two dissimilar pre-stressed elastic half-spaces. The reflection
and transmission coefficients are obtained using Rayleigh’s method of approximation by assuming that the
amplitude and slope of the corrugated interface are small. The closed-form formulae of these coefficients for the
first-order approximation are then presented for a particular type of interface (cosine law interface). Some more
results including the results of Sidhu and Singh [21] have been deduced as particular cases from the present problem.
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2. Problem formulation and equations

Consider the Cartesian x- and z-axes perpendicular to each other and lying on the horizontal plane, while
the y-axis is vertical to this plane with its positive direction pointing downward. Suppose the two
homogeneous pre-stressed half-spaces, namely M 0 and M 0 occupy the regions �1oypzðxÞ and zðxÞpyo1,
respectively, and are separated by a corrugated interface, y ¼ zðxÞ. The Fourier series expansion of this
corrugated surface is given by

zðxÞ ¼
X1
n¼1

ðzne
{npx þ z�ne

�{npxÞ, (1)

where zðxÞ is a periodic function of x and independent of z, whose mean value is zero, zn and z�n are Fourier
expansion coefficients, n is the series expansion order, { ¼

ffiffiffiffiffiffiffi
�1
p

and the wavelength of corrugation is given by 2p=p.
We shall denote the parameters in the half-space M without a prime and those in the half-space M 0 with a

prime. These half-spaces are either isotropic in finite strain or anisotropic with an orthotropic symmetry. By
isotropic in finite strain, we mean that the stress is related to the finite strain by the relations which are
independent of the orientation of the stress field. From the viewpoint of the incremental stresses the medium is
isotropic in the vicinity of the unstressed state, but it will become anisotropic in a state of finite strain
considered as the initial state. The coordinate systems are chosen to coincide with the principal directions of
the initial stress which is then represented by its three principal components. Since the medium is isotropic in
finite strain, the principal directions of stress define three planes of symmetry for the incremental elastic
properties. This means that the incremental stress–strain relations must possess orthotropic symmetry
(see Biot [14], p. 89). The state of initial stress is therefore defined by the principal components S11;S22 and S33

in the half-space M and by S011;S
0
22 and S033 in the half-space M 0. If we restrict our analysis only to plane strain

parallel to the xy-plane with the displacement components U and U 0 in the x direction and V and V 0 in the y

direction then the third principal stresses S33 and S033 do not enter explicitly in the equations of motion.
Following Biot [12], the equations of motion for qP-wave propagation in the medium M are given by

B11
q2U
qx2
þ A3

q2V
qx qy

þ A1
q2U

qy2
¼ r

q2U

qt2
; B22

q2V

qy2
þ A3

q2U
qx qy

þ A2
q2V
qx2
¼ r

q2V

qt2
, (2)

where A1 ¼ Qþ P=2; A2 ¼ Q� P=2, A3 ¼ B12 þ A2, B12 ¼ B21 þ P, P ¼ S22 � S11, r is the density of the
medium M and B11;B22;B12 and Q are the incremental elastic coefficients.

Similarly, adopting the corresponding notations in the medium M 0; the equations of motion for qP-waves
are given by

B011
q2U 0

qx2
þ A03

q2V 0

qx qy
þ A01

q2U 0

qy2
¼ r0

q2U 0

qt2
; B022

q2V 0

qy2
þ A03

q2U 0

qx qy
þ A02

q2V 0

qx2
¼ r0

q2V 0

qt2
. (3)

3. Reflection and transmission

Let a plane elastic wave propagating through M with phase velocity c be incident at the corrugated interface
making an angle y0 with the normal. Sidhu and Singh [21] have shown that there exist two types of plane
waves propagating with velocities given by

2rc21;2 ¼ E1ðy0Þ þ E2ðy0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1ðy0Þ � E2ðy0ÞÞ

2
þ 4A2

3 sin
2 y0 cos2 y0

q
, (4)

where E1ðy0Þ ¼ B11 sin
2 y0 þ A1 cos

2 y0 and E2ðy0Þ ¼ B22 cos
2 y0 þ A2 sin

2 y0.
Clearly, the velocities given by c21 (with upper sign) and c22 (with lower sign) depend on the angle y0. Out of

these two velocities, the larger one given by c1ðy0Þ represents the velocity for qP-waves and the smaller one
given by c2ðy0Þ represents the velocity for qSV-waves in the pre-stressed elastic medium.

When a plane qP-wave becomes incident at the corrugated interface, there are irregularly reflected and
transmitted waves due to corrugation of the interface, in addition to the regularly reflected and transmitted qP
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Fig. 1. Geometry of the problem.
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and qSV-waves (see Asano [2]). These regularly reflected and transmitted waves are the same waves, which
arise due to plane interface. The irregularly reflected and transmitted waves are those scattered waves which
propagate with the same velocity as regular waves and appear on the left and right sides of the regular waves.
The geometry of the problem is given in Fig. 1.

Thus, the total displacement in the medium M is given by the sum of the displacements caused by the
incident wave, the regularly reflected waves and the irregularly reflected waves as follows:

U ¼ G0e
{J0 þ G1e

{J1 þ G2e
{J2 þ

X1
n¼1

½Gþ1ne
{Jþ

1n þ G�1ne
{J�1n þ Gþ2ne

{Jþ
2n þ G�2ne

{J�2n �,

V ¼ H0e
{J0 þH1e

{J1 þH2e
{J2 þ

X1
n¼1

½Hþ1ne
{Jþ

1n þH�1ne
{J�1n þHþ2ne

{Jþ
2n þH�2ne

{J�2n �, (5)

where G0 and H0 are the amplitude constants of horizontal and vertical components of the displacement
due to incident qP-wave, G1;H1;G2;H2;G

�
1n;H

�
1n;G

�
2n and H�2n are the amplitude constants and J0; J1; J2; J

�
1n

and J�2n are, respectively, the phase factors of the incident qP-wave at an angle y0, regularly reflected qP-wave
at an angle y, regularly reflected qSV-wave at an angle f, irregularly reflected qP-waves at angles y�n , the
irregularly reflected qSV-waves at angles f�n and are given by J0 ¼ kfc1t� ðx sin y0 � y cos y0Þg; J1 ¼

kfc1t�ðx sin yþ y cos yÞg; J2¼ kfc2t�ðx sinfþ y cosfÞg, J�1n¼ kfc1t�ðx sin y�n þ y cos y�n Þg and J�2n ¼ kfc2t�

ðx sinf�n þ y cosf�n Þg, k is the wave number.
The relations between various amplitude constants of horizontal and vertical components of displacements

are given by (see Sidhu and Singh [21])

G0 ¼ F 0H0; G1 ¼ �F1H1; G2 ¼ �F2H2; G�1n ¼ �F�1nH�1n; G�2n ¼ �F�2nH�2n, (6)

where

F 0 ¼ F 1 ¼
A3 sin y cos y
E1ðyÞ � rc21

; F�1n ¼
A3 sin y

�
n cos y�n

E1ðy
�
n Þ � rc21

; F2 ¼
A3 sinf cosf
E1ðfÞ � rc22

; F�2n ¼
A3 sinf

�
n cosf�n

E1ðf
�
n Þ � rc22

,

E1ðyÞ ¼ B11 sin
2 yþ A1 cos

2 y; E1ðfÞ ¼ B11 sin
2 fþ A1 cos

2 f; E1ðy
�
n Þ ¼ B11 sin

2 y�n þ A1 cos
2 y�n ,
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E1ðf
�
n Þ ¼ B11 sin

2 f�n þ A1 cos
2 f�n .

E2ðyÞ ¼ B22cos
2 yþ A2sin

2 y; E2ðfÞ ¼ B22cos
2 fþ A2sin

2 f,

2rc21ðyÞ ¼ E1ðyÞ þ E2ðyÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fE1ðyÞ � E2ðyÞg2 þ 4A2

3sin
2y cos2 y

q
,

2rc22ðfÞ ¼ E1ðfÞ þ E2ðfÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fE1ðfÞ � E2ðfÞg2 þ 4A2

3sin
2 f cos2 f

q
,

Similarly, the total displacement in the medium M 0 is given by the sum of displacements caused by regularly
and irregularly transmitted waves as follows:

U 0 ¼ G3e
{J3 þ G4e

{J4 þ
X1
n¼1

½Gþ3ne
{Jþ

3n þ G�3ne
{J�3n þ Gþ4ne

{Jþ
4n þ G�4ne

{J�4n �,

V 0 ¼ H3e
{J3 þH4e

{J4 þ
X1
n¼1

½Hþ3ne
{Jþ

3n þH�3ne
{H�3n þHþ4ne

{Jþ
4n þH�4ne

{J�4n �, (7)

where G3;H3;G4;H4;G
�
3n;H

�
3n;G

�
4n and H�4n are the amplitude constants and J3; J4; J

�
3n and J�4n are,

respectively, the phase factors of the regularly transmitted qP-wave at an angle d, the regularly transmitted
qSV-wave at an angle g, the irregularly transmitted qP-waves at angles d�n , the irregularly transmitted qSV-
waves at angles g�n and are given by J3 ¼ kfc01t� ðx sin d� y cos dÞg; J�3n ¼ kfc01t� ðx sin d�n � y cos d�n Þg, J4 ¼

kfc02t� ðx sin g� y cos gÞg; J�4n ¼ kfc02t� ðx sin g�n � y cos g�n Þg: Similar to the relations in (6), we have

G3 ¼ F 3H3; G4 ¼ F 4H4; G�3n ¼ F�3nH�3n; G�4n ¼ F�4nH�4n, (8)

where

F 3 ¼
A03 sin d cos d
E01ðdÞ � r0c021

; F�3n ¼
A03 sin d

�
n cos d�n

E 01ðd
�
n Þ � r0c021

; F 4 ¼
A03 sin g cos g
E 01ðgÞ � r0c022

; F�4n ¼
A03 sin g

�
n cos g�n

E01ðg�n Þ � r0c022
,

E01ðdÞ ¼ B011 sin
2 dþ A01 cos

2 d; E 01ðgÞ ¼ B011 sin
2 gþ A01 cos

2 g; E01ðd
�
n Þ ¼ B011 sin

2 d�n þ A01 cos
2 d�n ,

E01ðg
�
n Þ ¼ B011 sin

2 g�n þ A01 cos
2 g�n ; E02ðdÞ ¼ B022 cos

2 dþ A02 sin
2 d; E02ðgÞ ¼ B022 cos

2 gþ A02 sin
2 g,

2r0c021 ¼ E01ðdÞ þ E02ðdÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fE 01ðdÞ � E02ðdÞg

2 þ 4A03
2
sin2 d cos2 d

q
,

2r0c022 ¼ E01ðgÞ þ E02ðgÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fE 01ðgÞ � E02ðgÞg

2 þ 4A03
2
sin2 g cos2 g

q
.

Snell’s law, which gives the relation of the angle of incidence with the angles of regularly reflected waves and
the transmitted waves, is given by

sin y0
c1ðy0Þ

¼
sin y
c1ðyÞ

¼
sinf
c2ðfÞ

¼
sin d
c01ðdÞ

¼
sin g
c02ðgÞ

¼
1

ca

, (9)

where ca is the apparent velocity. Moreover, each angle of regularly reflected and transmitted waves is
related to the angle of irregularly reflected and transmitted waves through the following Spectrum theorem
(see Asano [3]) as

sin

y�n
f�n
d�n
g�n

8>>>><
>>>>:

9>>>>=
>>>>;
� sin

y

f

d

g

8>>><
>>>:

9>>>=
>>>;
¼ �

np

o

c1

c2

c01

c02

8>>>><
>>>>:

9>>>>=
>>>>;
. (10)

where o is the angular frequency.
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4. Boundary conditions

The appropriate boundary conditions are the continuity of displacement components and traction at the
corrugated interface y ¼ zðxÞ: Mathematically, these boundary conditions can be expressed as: At y ¼ zðxÞ

V ¼ V 0, (11)

U ¼ U 0, (12)

�z0 B11
qU

qx
þ B1

qV

qy

� �
þ A01

qV

qx
þ A1

qU

qy
¼ �z0 B011

qU 0

qx
þ B01

qV 0

qy

� �
þ A001

qV 0

qx
þ A01

qU 0

qy
(13)

and

�z0 A2
qV

qx
þ A01

qU

qy

� �
þ B1

qU

qx
þ B22

qV

qy
¼ �z0 A02

qV 0

qx
þ A001

qU 0

qy

� �
þ B01

qU 0

qx
þ B022

qV 0

qy
, (14)

where A01 ¼ Q� ðS22 þ S11Þ=2;A
0
01 ¼ Q0 � ðS022 þ S011Þ=2;B1 ¼ B12 þ S11 and B01 ¼ B012 þ S011.

Inserting the values of U ;V ;U 0 and V 0 from Eqs. (5) and (7) into Eqs. (11)–(14), we obtain

H0e
{zR0 þH1e

�{zR þH2e
�{zQ þ

X1
n¼1

½fHþ1ne
�{zRþn þHþ2ne

�{zQþn ge�{npx þ fH�1ne
�{zR�n þH�2ne

�{zQ�n ge{npx�

¼ H3e
{zS þH4e

{zL þ
X1
n¼1

½fHþ3ne
{zSþn þHþ4ne

{zLþn ge�{npx þ fH�3ne
{zS�n þH�4ne

{zL�n ge{npx�, (15)

G0e
{zR0 þ G1e

�{zR þ G2e
�{zQ þ

X1
n¼1

½fGþ1ne
�{zRþn þ Gþ2ne

�{zQþn ge�{npx þ fG�1ne
�{zR�n þ G�2ne

�{zQ�n ge{npx�

¼ G3e
{zS þ G4e

{zL þ
X1
n¼1

½fGþ3ne
{zSþn þ Gþ4ne

{zLþn ge�{npx þ fG�3ne
{zS�n þ G�4ne

{zL�n ge{npx�, (16)

fðz0G0B11 � A01H0ÞP0 þ ð�z
0B1H0 þ A1G0ÞR0ge

{zR0 þ fðz0G1B11 � A01H1ÞP0 þ ðz
0B1H1

� A1G1ÞRge
�{zR þ fðz0G2B11 � A01H2ÞP0 þ ðz

0B1H2 � A1G2ÞQge
�{zQ þ

X1
n¼1

½fðP0 þ npÞðz0Gþ1nB11

� A01Hþ1nÞ þ ðz
0B1H

þ
1n � A1G

þ
1nÞR

þ
n ge
�{zRþn e�{npx þ fðP0 � npÞðz0G�1nB11 � A01H�1nÞ þ ðz

0B1H
�
1n

� A1G
�
1nÞR

�
n ge
�{zR�n e{npx þ fðP0 þ npÞðz0Gþ2nB11 � A01Hþ2nÞ þ ðz

0B1Hþ2n � A1G
þ
2nÞQ

þ
n ge
�{zQþn e�{npx

þ fðP0 � npÞðz0G�2nB11 � A01H�2nÞ þ ðz
0B1H�2n � A1G�2nÞQ

�
n ge
�{zQ�n e{npx� ¼ fðz0B011G3 � A001H3ÞP0

� ðz0B01H3 � A01G3ÞSge
{zS þ fðz0B011G4 � A001H4ÞP0 � ðz

0B01H4 � A01G4ÞLge
{zL þ

X1
n¼1

½fðP0

þ npÞðGþ3nB011z
0
� A001Hþ3nÞ � ðz

0B01H
þ
3n � A01G

þ
3nÞS

þ
n ge

{zSþn e�{npx þ fðP0 � npÞðG�3nB011z
0

� A001H�3nÞ � ðz
0B01H

�
3n � A01G

�
3nÞS

�
n ge

{zS�n e{npx þ fðP0 þ npÞðGþ4nB011z
0
� A001Hþ4nÞ � ðz

0B01H
þ
4n � A01G

þ
4nÞ

� Lþn ge
{zLþn e�{npx þ fðP0 � npÞðG�4nB011z

0
� A001H�4nÞ � ðz

0B01H�4n � A01G�4nÞL
�
n ge

{zL�n e{npx�, (17)

fðz0H0A2 � B1G0ÞP0 � ðz
0A01G0 � B22H0ÞR0ge

{zR0 þ fðz0H1A2 � B1G1ÞP0 þ ðz
0A01G1

� B22H1ÞRge
�{zR þ fðz0H2A2 � B1G2ÞP0 þ ðA01G2z

0
� B22H2ÞQge

�{zQ þ
X1
n¼1

½fðP0 þ npÞ

� ðz0A2Hþ1n � B1Gþ1nÞ þ ðz
0A01Gþ1n � B22Hþ1nÞR

þ
n ge
�{zRþn e�{npx þ fðP0 � npÞðz0A2H

�
1n � B1G

�
1nÞ
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þ ðA01G�1nz
0
� B22H�1nÞR

�
n ge
�{zR�n e{npx þ fðP0 þ npÞðz0A2Hþ2n � B1Gþ2nÞ þ ðA01Gþ2nz

0
� B22Hþ2nÞQ

þ
n g

� e�{zQþn e�{npx þ fðP0 � npÞðz0A2H
�
2n � B1G

�
2nÞ þ ðz

0A01G�2n � B22H�2nÞQ
�
n ge
�{zQ�n e{npx�

¼ fðz0A02H3 � B01G3ÞP0 � ðz
0A001G3 � B022H3ÞSge

{zS þ fðz0A02H4 � B01G4ÞP0 � ðz
0A001G4

� B022H4ÞLge
{zL þ

X1
n¼1

½fðP0 þ npÞðHþ3nA02z
0
� B01G

þ
3nÞ � ðz

0A001Gþ3n � B022Hþ3nÞS
þ
n ge

{zSþn e�{npx

þ fðP0 � npÞðH�3nA02z
0
� B01G

�
3nÞ � ðz

0A001G�3n � B022H�3nÞS
�
n ge

{zS�n e{npx þ fðP0 þ npÞðHþ4nA02z
0

� B01Gþ4nÞ � ðz
0A001Gþ4n � B022Hþ4nÞL

þ
n ge

{zLþn e�{npx þ fðP0 � npÞðH�4nA02z
0
� B01G

�
4nÞ � ðz

0A001G�4n

� B022H�4nÞL
�
n ge

{zL�n e{npx�, (18)

where

z0 ¼
X1
n¼1

ðzne
inpx � z�ne

�inpxÞ{np,

P0 ¼
o sin y0

c1
; R0 ¼ R ¼

o cos y
c1

; R�n ¼
o cos y�n

c1
; Q ¼

o cosf
c2

; Q�n ¼
o cosf�n

c2
,

S ¼
o cos d

c01
; S�n ¼

o cos d�n
c01

; L ¼
o cos g

c02
; L�n ¼

o cos g�n
c02

.

These Eqs. (15)–(18) are the equations satisfying the boundary conditions which consist of unknown
amplitude constants. Knowing the expressions of amplitude constants from these equations, one can obtain
the reflection and transmission coefficients to the nth order of approximation of the corrugated interface.
Here, we shall obtain these coefficients only for the first-order approximation of the corrugation.
5. Solution of the first-order approximation

Assuming that the amplitude and slope of the corrugated interface are so small that the higher powers of z
can be neglected, we can write

expð�{zRÞ � 1� {zR. (19)

Using Eqs. (6), (8)–(10) and (19) in Eqs. (15)–(18) and comparing the term independent of x and z to both
sides of the resulting equations, we obtain

H1

H0
þ

H2

H0
�

H3

H0
�

H4

H0
¼ �1, (20)

F1
H1

H0
þ F 2

H2

H0
þ F3

H3

H0
þ F4

H4

H0
¼ F1, (21)

�a1
H1

H0
þ a2

H2

H0
þ a3

H3

H0
þ a4

H4

H0
¼ a1, (22)

b1
H1

H0
þ b2

H2

H0
þ b3

H3

H0
þ b4

H4

H0
¼ b1, (23)

where

a1 ¼ P0A01 � RF 1A1; a2 ¼ �P0A01 þQF 2A1; a3 ¼ P0A
0
01 � SF 3A01; a4 ¼ P0A

0
01 � LF 4A

0
1,

b1 ¼ F1P0B1 � B22R; b2 ¼ F2P0B1 � B22Q; b3 ¼ F3P0B
0
1 � B022S and b4 ¼ F 4P0B01 � B022L.
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Next, comparing the coefficient of e�{npx to both sides, we obtain

Hþ1n

H0
þ

Hþ2n

H0
�

Hþ3n

H0
�

Hþ4n

H0
¼ aþ10, (24)

Fþ1n

Hþ1n

H0
þ Fþ2n

Hþ2n

H0
þ Fþ3n

Hþ3n

H0
þ Fþ4n

Hþ4n

H0
¼ aþ20, (25)

aþ1n

Hþ1n

H0
þ aþ2n

Hþ2n

H0
þ aþ3n

Hþ3n

H0
þ aþ4n

Hþ4n

H0
¼ aþ0n, (26)

bþ1n

Hþ1n

H0
þ bþ2n

Hþ2n

H0
þ bþ3n

Hþ3n

H0
þ bþ4n

Hþ4n

H0
¼ bþ0n, (27)

where

aþ10 ¼ {z�n �Rþ R
H1

H0
þQ

H2

H0
þ S

H3

H0
þ L

H4

H0

� �
; aþ20 ¼ {z�n F1Rþ F1R

H1

H0
þ F2Q

H2

H0
� F3S

H3

H0
� F4L

H4

H0

� �
,

aþ1n ¼ �A01ðP0 þ npÞ þ Fþ1nA1Rþn ; aþ2n ¼ �A01ðP0 þ npÞ þ Fþ2nA1Qþn ; aþ3n ¼ A001ðP0 þ npÞ � Fþ3nA01S
þ
n ,

aþ4n ¼ A001ðP0 þ npÞ � Fþ4nA01L
þ
n ; aþ0n ¼ {z�n B11F 1npP0 � B1npRþ A01P0R� A1F 1R

2 þ f�B11F1npP0

�

þ B1npR� A01P0Rþ A1F1R2g
H1

H0
þ f�B11npF 2P0 þ B1npQ� A01P0Qþ A1F2Q2g

H2

H0
þ f�B011F3npP0

þB01npS � A001P0S þ A01F 3S
2g

H3

H0
þ f�B011F4npP0 þ B01npL� A001LP0 þ A01F 4L

2g
H4

H0

�
,

bþ1n ¼ B1F
þ
1nðP0 þ npÞ � B22Rþn ; bþ2n ¼ B1F

þ
2nðP0 þ npÞ � B22Qþn ; bþ3n ¼ Fþ3nB01ðP0 þ npÞ � B022Sþn ,

bþ4n ¼ Fþ4nðP0 þ npÞB01 � B022Lþn ; bþ0n ¼ {z�n A2npP0 � A01F 1npRþ B1F 1RP0 � B22R2

�

þ fnpA2P0 � F1npA01Rþ B1F 1RP0 � B22R2g
H1

H0
þ fA2npP0 � F2npA01Qþ B1F 2QP0 � B22Q2g

H2

H0

þf�npA02P0 þ npF 3A
0
01S � B01F3S þ B022S2g

H3

H0
þ f�A02npP0 þ npF 4A

0
01L� B01F 4LP0 þ B022L2g

H4

H0

�
.

Likewise, comparing the coefficient of e{npx to both sides, we obtain

H�1n

H0
þ

H�2n

H0
�

H�3n

H0
�

H�4n

H0
¼ a�10, (28)

F�1n

H�1n

H0
þ F�2n

H�2n

H0
þ F�3n

H�3n

H0
þ F�4n

H�4n

H0
¼ a�20, (29)

a�1n

H�1n

H0
þ a�2n

H�2n

H0
þ a�3n

H�3n

H0
þ a�4n

H�4n

H0
¼ a�0n, (30)

b�1n

H�1n

H0
þ b�2n

H�2n

H0
þ b�3n

H�3n

H0
þ b�4n

H�4n

H0
¼ b�0n, (31)

where

a�10 ¼ {zn �Rþ R
H1

H0
þQ

H2

H0
þ S

H3

H0
þ L

H4

H0

� �
; a�20 ¼ {zn F 1Rþ F 1R

H1

H0
þ F 2Q

H2

H0
� F3S

H3

H0
� F4L

H4

H0

� �
,
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a�1n ¼ �A01ðP0 � npÞ þ F�1nA1R
�
1n; a�2n ¼ �A01ðP0 � npÞ þ F�2nA1Q

�
n ; a�3n ¼ A001ðP0 � npÞ � F�3nA01S�n ,

a�4n ¼ A001ðP0 � npÞ � F�4nA01L
�
n ; a�0n ¼ {zn � npB11F1P0 þ npB1Rþ A01RP0 � A1F0R2

�

þ fðnpF 1B11 � A01RÞP0 þ A1F1R
2 � npB1Rg

H1

H0
þ fðB11npF 2 � A01QÞP0 � npB1Qþ F 2A1Q

2g
H2

H0

þfðnpB011F3 � A001SÞP0 � B01npS þ F3A01S2g
H3

H0
þ fðnpF 4B

0
11 � A001LÞP0 � B011npLþ F4A

0
1L

2g
H4

H0

�
,

b�1n ¼ B1F�1nðP0 � npÞ � B22R�n ; b�2n ¼ B1F�2nðP0 � npÞ � B22Q�n ; b�3n ¼ F�3nB01ðP0 � npÞ þ B022S�n ,

b�4n ¼ F�4nðP0 � npÞB01 þ B022L�n ; b�0n ¼ {zn ð�npA2 þ F 1B1RÞP0 þ F 1npA01R� B22R2 þ fð�npA2

�

� B1F 1RÞP0 þ A01F 1npR� B22R2g
H1

H0
þ fð�npA2 þ B1F 2QÞP0 þ F2A01npQ� B22Q2g

H2

H0

þfðA02np� B01F3SÞP0 � F 3A
0
01npS þ B022S2g

H3

H0
þ fðnpA02 � B01F 4LÞP0 � F4npA001Lþ B022L2g

H4

H0

�
.

Eqs. (20)–(23) give the formulae for amplitude constants at the plane interface between two different
pre-stressed elastic half-spaces, while Eqs. (24)–(31) give that at a corrugated interface for the first-order
approximation of the corrugation.

Solving Eqs. (20)–(23), we get the ratios of amplitude constants for vertical displacement component of the
reflected and transmitted waves at the plane interface as

H1

H0
¼

DH1

D
;

H2

H0
¼

DH2

D
;

H3

H0
¼

DH3

D
;

H4

H0
¼

DH4

D
(32)

where

D ¼

1 1 �1 �1

F 1 F 2 F 3 F4

�a1 a2 a3 a4

b1 b2 b3 b4

���������

���������
and the expressions of DH1;DH2;DH3 and DH4 can be written by replacing the first, second, third and fourth
columns of the above determinant in D with the column matrix ½�1 F1 a1 b1�

t, respectively. Using Eqs. (6)
and (8), we obtain the expression of the ratios of amplitude constants for horizontal displacement components
of the reflected and transmitted waves at the plane interface as

G1

G0
¼ �

DH1

D
;

G2

G0
¼ �

F 2

F 1

DH2

D
;

G3

G0
¼

F3

F1

DH3

D
;

G4

G0
¼

F4

F1

DH4

D
. (33)

The amplitude of the incident qP-wave is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0 þ G2
0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F 2

1

q
H0.

Therefore, the reflection coefficients Rpp (corresponding to the reflected qP-wave), Rps (corresponding to the
reflected qSV-wave), transmission coefficients Tpp (corresponding to the transmitted qP-wave) and Tps

(corresponding to the transmitted qSV-wave) are then given by

Rpp ¼
DH1

D
; Rps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F 2

2

1þ F 2
1

s
DH2

D
; Tpp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F 2

3

1þ F 2
1

s
DH3

D
; Tps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F 2

4

1þ F 2
1

s
DH4

D
. (34)

It is clear that these coefficients at the plane interface are independent of the amplitude of corrugation and the
frequency of the incident wave.

After obtaining the amplitude constants corresponding to irregularly reflected and transmitted waves for the
first-order approximation of the corrugated interface from Eqs. (24)–(31), the concerned expression of
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reflection and transmission coefficients can be calculated. We shall obtain these coefficients in the next section
for a periodic type of interface.

6. A periodic interface

Let us take a simple periodic interface represented by only one cosine term, i.e., z ¼ d cos px, where d is the
amplitude of the corrugated interface and 2p=p is the wavelength of the corrugation. Comparing this equation
with Eq. (1), we obtain

z�n ¼ zn ¼

0 if na1;
d

2
if n ¼ 1:

8<
:

Using these values in Eqs. (24)–(31), we can obtain the values of Hþ11=H0;H
þ
21=H0;H

þ
31=H0; Hþ41=H0;

H�11=H0;H
�
21=H0;H

�
31=H0and H�41=H0; which are ratios of amplitude constants of the vertical component of

displacement for irregularly reflected and transmitted waves to that of incident wave as

Hþ11
H0
¼

DþH11

Dþ1
;

Hþ21
H0
¼

DþH21

Dþ1
;

Hþ31
H0
¼

DþH31

Dþ1
;

Hþ41
H0
¼

DþH41

Dþ1
,

H�11
H0
¼

D�H11

D�1
;

H�21
H0
¼

D�H21

D�1
;

H�31
H0
¼

D�H31

D�1
;

H�41
H0
¼

D�H41

D�1
. (35)

The ratios of the amplitude constants of the horizontal component of displacement for irregularly reflected
and transmitted waves to that of incident wave are given by

Gþ11
G0
¼ �

Fþ11
F 1

DþH11

Dþ1
;

Gþ21
G0
¼ �

Fþ21
F1

DþH21

Dþ1
;

Gþ31
G0
¼

Fþ31
F 1

DþH31

Dþ1
;

Gþ41
G0
¼

Fþ41
F1

DþH41

Dþ1
,

G�11
G0
¼ �

F�11
F 1

D�H11

D�1
;

G�21
G0
¼ �

F�21
F1

D�H21

D�1
;

G�31
G0
¼

F�31
F 1

D�H31

D�1
;

G�41
G0
¼

F�41
F1

D�H41

D�1
, (36)

where

Dþ1 ¼

1 1 �1 �1

Fþ11 Fþ21 Fþ31 Fþ41

aþ11 aþ21 aþ31 aþ41

bþ11 bþ21 bþ31 bþ41

����������

����������
; D�1 ¼

1 1 �1 �1

F�11 F�21 F�31 F�41

a�11 a�21 a�31 a�41

b�11 b�21 b�31 b�41

����������

����������
.

The expressions of quantities F�11;F
�
21; a

�
11; a

�
21; b

�
11; b

�
21, etc. can be obtained from the expressions of quantities

F�1n;F
�
2n; a

�
1n; a

�
2n; b

�
1n; b

�
2n, etc. by putting n ¼ 1, respectively, the expressions of DþH11;D

þ
H21;D

þ
H31 and DþH41 can

be written by replacing the first, second, third and fourth columns, respectively, of the determinant in Dþ1 by
the column matrix ½aþ10 aþ20 aþ01 bþ01�

t and the expressions of D�H11;D
�
H21;D

�
H31 and D�H41 can be written by

replacing the first, second, third and fourth columns, respectively, of the determinant in D�1 by the column
matrix ½a�10 a�20 a�01 b�01�

t. The expressions of a�01 and b�01 can be obtained from a�0n and b�0n, respectively, by

putting n ¼ 1.Thus, the reflection coefficients: R1
pp� (for irregularly reflected qP-waves at angles y�1 ), R1

ps�

(for irregularly reflected qSV-waves at angles f�1 ) and the transmission coefficients: T1
pp� (for irregularly

transmitted qP-waves at angles d�1 ), T1
ps� (for irregularly transmitted qSV-waves at angles g�1 ) are given by

R1
pp� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðF�11Þ

2

1þ F 2
1

s
D�H11

D�1
; R1

ps� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðF�21Þ

2

1þ F2
1

s
D�H21

D�1
,

T1
pp� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðF�31Þ

2

1þ F 2
1

s
D�H31

D�1
; T1

ps� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðF�41Þ

2

1þ F2
1

s
D�H41

D�1
. (37)
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It can be seen that these coefficients are functions of the angle of incidence, initial stress, incremental elastic
coefficients, amplitude of the corrugation and frequency of the incident waves.
7. Particular cases

(a) To reduce the problem at a corrugated interface between a homogeneous isotropic elastic solid half-
space and a pre-stressed elastic solid half-space, we substitute B011 ¼ B022 ¼ l0 þ 2m0;B012 ¼ B021 ¼ B01 ¼ l0;A01 ¼
A02 ¼ Q0 ¼ A001 ¼ m0;A03 ¼ l0 þ m0 and S011 ¼ S022 ¼ 0 into the expressions and equations in the half-space M 0.
With these substitutions, the quantities in the half-space M 0 reduce to c01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 þ 2m0=r0

p
; c02 ¼

ffiffiffiffiffiffiffiffiffiffi
m0=r0

p
;F3 ¼

� tan d;F 4 ¼ cot g;F�31 ¼ � tan d�1 and F�41 ¼ cot g�1 . In this case, the reflection and transmission coefficients
of the regularly reflected and transmitted waves are given by Eq. (34) with the following modified values of
a3; a4; b3 and b4 given by a3 ¼ ðP0 þ S tan dÞm0; a4 ¼ ðP0 � L cot gÞm0; b3 ¼ �P0l

0 tan d� ðl0 þ 2m0ÞS and
b4 ¼ P0l

0 cot g� ðl0 þ 2m0ÞL.
The reflection and transmission coefficients at the corrugated interface for the first-order approximation for

the case of a periodic interface are given by Eq. (37) with the following modified values:

aþ20 ¼ a�20 ¼ {
d

2
F 1Rþ F 1R

H1

H0
þ F 2Q

H2

H0
þ S tan d

H3

H0
� L cot g

H4

H0

� �
; aþ31 ¼ m0ðP0 þ pÞ þ m0Sþ1 tan dþ1 ,

aþ41 ¼ m0ðP0 þ pÞ � m0Lþ1 cot gþ1 ; aþ01 ¼
d

2
{ B11F1pP0 � B1pRþ A01P0R� A1F0R

2 þ f�B11F1pP0

�

þ B1pR� A01P0Rþ A1F1R2g
H1

H0
þ f�B11pF2P0 þ B1pQ� A01P0Qþ A1F2Q2g

H2

H0
þ fðl0 þ 2m0ÞpP0 tan d

þl0pS � m0P0S � m0S2 tan dg
H3

H0
þ f�ðl0 þ 2m0ÞpP0 cot gþ l0pL� m0LP0 þ m0L2 cot gg

H4

H0

�
,

bþ31 ¼ � l0ðP0 þ pÞ tan dþ1 � ðl
0
þ 2m0ÞSþ1 ; bþ41 ¼ l0ðP0 þ pÞ cot gþ1 � ðl

0
þ 2m0ÞLþ1 ,

bþ01 ¼ {
d

2
A2pP0 � A01F1pRþ B1F1RP0 � B22R2 þ fpA2P0 � F 1pA01Rþ B1F2RP0 � B22R2g

H1

H0

�

þ fA2pP0 � F2pA01Qþ B1F 2QP0 � B22Q2g
H2

H0
þ f�pm0P0 � pm0S tan dþ l0S tan dþ ðl0 þ 2m0ÞS2g

H3

H0

þf�m0pP0 þ pm0L cot g� l0LP0 cot gþ ðl
0
þ 2m0ÞL2g

H4

H0

�
; a�31 ¼ m0ðP0 � pÞ þ m0S�1 tan d�1 ,

a�41 ¼ m0ðP0 � pÞ � m0L�1 cot g�1 ,

a�01 ¼ {
d

2
� pB11F1P0 þ pB1Rþ A01RP0 � A1F1R2 þ fðpF 1B11 � A01RÞP0 þ A1F1R2 � pB1Rg

H1

H0
þ fðB11pF2

�

� A01QÞP0 � pB1Qþ F2A1Q2g
H2

H0
þ fð�pðl0 þ 2m0Þ tan d� m0SÞP0 � l0pS � m0S2 tan dg

H3

H0
þ fðpðl0

þ2m0Þ cot g� m0LÞP0 � ðl
0
þ 2m0ÞpLþ m0L2 cot gg

H4

H0

�
; b�31 ¼ �l

0
ðP0 � pÞ tan d�1 þ ðl

0
þ 2m0ÞS�1 ,

b�41 ¼ ðP0 � pÞl0 cot g�1 þ ðl
0
þ 2m0ÞL�1 ; b�01 ¼ {

d

2
fð�pA2 þ F1B1RÞP0 þ F1pA01R� B22R2 þ fð�pA2

�

� B1F1RÞP0 þ A01F 1pR� B22R2g
H1

H0
þ fð�pA2 þ B1F2QÞP0 þ F2A01pQ� B22Q2g

H2

H0
þ fðm0p

þSl0 tan dÞP0 þ m0pS tan dþ ðl0 þ 2m0ÞS2g
H3

H0
þ fðpm0 � Ll0 cot gÞP0 � pm0L cot gþ ðl0 þ 2m0ÞL2g

H4

H0

�
.

These reflection and transmission coefficients at the corrugated interface for the first-order approximation of a
periodic interface are functions of the angle of incidence, elastic parameters, initial stress, amplitude of the
corrugated interface and frequency of the incident wave. When the amplitude of the corrugated interface is set
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equal to zero, i.e., when d ¼ 0 in the formulae given in Eq. (37), it can be seen that each one of the coefficients
corresponding to irregularly reflected and transmitted waves disappears as all these coefficients are
proportional to the amplitude of the corrugated interface. It is because of the quantities a�10; a

�
20; a

�
01 and b�01 are

proportional to the amplitude of the corrugated interface.
(b) If the elastic half-space M 0 is absent and the corrugation of the interface is neglected, then the problem

reduces to the problem of reflection of a qP-wave at the free plane boundary of a homogeneous pre-stressed
elastic half-space. For this, we substitute the quantities with a prime equal to zero and the reflection
coefficients at a plane free surface of a pre-stressed elastic half-space are given by Eqs. ð34Þ1 and ð34Þ2 with the
following modified values:

D ¼ a2b1 þ b2a1; DH1 ¼ a2b1 � b2a1; DH2 ¼ 2a1b1.

These reflection coefficients exactly match those obtained by Sidhu and Singh [21] for the corresponding
problem.

8. Computational results and discussion

The reflection and transmission coefficients are computed numerically at a periodic interface z ¼ d cos px by
taking the following values of relevant parameters in the half-spaces: in the half-space M: B11 ¼ 6:5�
1011 N=m2;B22 ¼ 1:8� 1010 N=m2;B21 ¼ �5:9� 1010 N=m2;Q ¼ 2:5� 1011 N=m2 and S11 ¼ S22 ¼ 4:0�
1010 N=m2; in the half-space M 0: B011¼ 2:1�1011 N=m2;B022¼ 1:6�1010 N=m2;B021¼�2:7�1010 N=m2;Q0 ¼
4:5� 1011 N=m2 and S011 ¼ S022 ¼ 2:0� 1010 N=m2 and the values of corrugation parameter and
frequency parameter, respectively, are taken as pd ¼ 1:22� 10�4 and o=pc1 ¼ 250:0 wherever not
mentioned.

For a given angle of incidence y0, one requires angles of reflected and transmitted qP and qSV-waves, i.e.,
angles y and f for reflected qP and qSV-waves, respectively, and angles d and g for transmitted qP and qSV-
waves, respectively. This can be obtained from Snell’s law given by Eq. (9), in which the dimensionless
apparent velocity c is given by c ¼ ca=b ¼ c1;2=p2b. With this, the equation corresponding to two roots
namely, c21 and c22 given in Eq. (4), can be written as

c4 � ðE1 þ E2Þc
2 þ E1E2 � A

2

3p2
0 ¼ 0, (38)

E1 ¼
E1

B11p2
2

; E2 ¼
E2

B11p2
2

; A3 ¼
A3

B11
; p0 ¼

p3

p2

; b ¼

ffiffiffiffiffiffiffi
B11

r

s
; ðp2; p3Þ ¼ ðsin y0; cos y0Þ.

From Eq. (38), we see that there are two roots of c2 corresponding to the velocities of qP- and qSV-waves, for
a given value of y0. And for a given value of c; there are two positive roots of y0 corresponding to the angles of
the reflected qP- and qSV-waves. Substituting these values of E1;E2 and A3 into Eq. (38), we obtain

g0p
4
0 þ g2p2

0 þ g4 ¼ 0, (39)

where

g0 ¼
A1

B11

A2

B11
; g2 ¼

A1

B11

B22

B11
þ

A2

B11
�

A2
3

B2
11

�
A1

B11
þ

A2

B11

� �
c2; g4 ¼ c4 � 1þ

B22

B11

� �
c2 þ

B22

B11
.

Transforming the above equation by using q ¼ 1
p0
¼

p2
p3
we obtain

g4q
4 þ g2q2 þ g0 ¼ 0. (40)

There are two positive roots of this equation. The larger positive root will correspond to a reflected qP-wave
and the smaller positive root will correspond to a reflected qSV-wave. Let q13 be the larger positive root and
q14 be the smaller positive root of this equation. Thus, the corresponding angles of the reflected qP and qSV-
waves are given by

y ¼ tan�1ðq13Þ and f ¼ tan�1ðq14Þ,
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A similar equation can be set up for transmitted waves in medium M 0 and the corresponding angles of the
transmitted qP and qSV-waves are obtained as

d ¼ tan�1ðq103Þ and g ¼ tan�1ðq104Þ.

Thus, we have obtained the directions of the regularly reflected and transmitted waves. The directions of the
irregularly reflected and transmitted waves can be computed by using the Spectrum theorem given in Eq. (10).

Now, we are ready to compute the reflection and transmission coefficients of the reflected and transmitted
qP and qSV-waves numerically from the formulae given in Eqs. (34) and (37). The results are shown
graphically in Figs. 2–17. In Figs. 2–13, the variation of the modulus of the reflection and transmission
coefficients of the reflected and transmitted waves are depicted with the angle of incidence y0 at different
values of the initial stresses. In these figures, curve I corresponds to the case when the initial stresses are zero
(isotropic elastic case), curve II corresponds to the case when the values of initial stresses are taken as
S11 ¼ S22 ¼ 2:0� 1010 N=m2, S011 ¼ S022 ¼ 1:0� 1010 N=m2, while curve III correspond to the case when the
values of the initial stress are taken as S11 ¼ S22 ¼ 4:0� 1010 N=m2, S011 ¼ S022 ¼ 2:0� 1010 N=m2 (only the
mantissa parts of these numerical values are shown in the figure legends). In Fig. 2, the effect of initial stress on
the reflection coefficient Rpp can be clearly noticed. We note that the coefficient Rpp increases with an increase
of the initial stress at every angle of incidence except at grazing and normal incidences. At normal and grazing
incidences, there is no effect of initial stress on Rpp. It can also be noted that for all the three cases considered,
the reflection coefficient Rpp starts from a certain value at normal incidence and then it decreases with an
increase of the angle of incidence y0 up to a certain value and afterwards, it increases with a further increase of
the angle of incidence and approaches unity as y0 approaches 901. Curves I–III have their minimum values,
respectively, at 251, 211 and 161 angles of incidence.

In Fig. 3, the reflection coefficient R1
ppþ corresponding to the irregularly reflected qP-wave starts from a

certain value at normal incidence and then, it decreases to the value zero at 181 angle of incidence for isotropic
case as shown in curve I and to the minimum value at 271 and 581 angles of incidence for non-zero initial stress
cases as shown in curves II and III, respectively. Thereafter, curves I and II are parabolic in nature in the range
18�py0p85� and 27�py0p82� attaining the maximum value at 61� and 59� angles of incidence, respectively,
while curve III increases with an increase of the angle of incidence. In Fig. 4, the value of reflection coefficient
R1

pp� corresponding to an irregularly reflected qP-wave is greater in the isotropic elastic case than those in the
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cases with initial stresses at each angle of incidence except at grazing incidence. However, it has been observed
that with the increase of parameters corresponding to initial stresses, this reflection coefficient decreases. The
effect of initial stress on the transmission coefficients Tpp and T1

ppþ corresponding to the regularly and
irregularly transmitted qP-waves can be seen clearly from Figs. 5 and 6. The effect of initial stress is maximum
at normal incidence, while it is negligible at grazing incidence. However, the coefficient Tpp increases, while the
coefficient T1

ppþ decreases with an increase of initial stress. We observe from Fig. 7, that the behavior of
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transmission coefficient T1
pp� corresponding to an irregularly transmitted qP-wave with the angle of incidence

is similar to R1
pp� as shown in Fig. 4. In Figs. 8, 10, 11 and 13, the modulus of the reflection coefficients Rps and

R1
ps� corresponding to the reflected qSV-waves and the transmission coefficients Tps and T1

ps� corresponding
to the transmitted qSV-waves increase from the value zero at normal incidence, with the increase of the angle
of incidence attaining their maxima at a certain intermediate angle of incidence. Thereafter, they decrease with
further increase of the angle of incidence, approaching the value zero as y0 approaches the vicinity of 90� angle
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of incidence. We note from Figs. 9 to 12 that the coefficients R1
psþ and T1

psþ corresponding to irregularly
reflected and transmitted qSV waves have a similar pattern with the angle of incidence. These are also
influenced by the initial stress in the same fashion.

Figs. 14–17 show the variation of the modulus of reflection and transmission coefficients of the irregularly
reflected and transmitted qP and qSV-waves with corrugation parameter pd and frequency parameter o=pc1
when the qP-wave is made incident at 15� angle of incidence. In these figures, we note that the reflection and
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transmission coefficients corresponding to irregularly reflected and transmitted waves increase linearly with an
increase of corrugation and frequency parameters. In Figs. 16 and 17, the linear increase of the reflection and
transmission coefficients with the frequency parameter o=pc1 is because the reflection and transmission
coefficients corresponding to the irregularly reflected and transmitted waves are proportional to the amplitude
of the corrugation. These results are similar to the results obtained in Asano [3] and Gupta [5] in their
problems.
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9. Conclusion

The reflection and transmission coefficients due to a plane qP-wave incident at a corrugated interface
between two pre-stressed elastic half-spaces are obtained. Rayleigh’s method of approximation is adopted
in order to find out these coefficients for first-order approximation of the corrugation. The solutions of
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first-order approximation of these coefficients are expressed in closed form for a periodic type of interface
(cosine law). It is concluded that
(i)
 the reflection and transmission coefficients are functions of the initial stresses, incremental elastic
coefficients and angle of incidence,
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(ii)
 the reflection and transmission coefficients corresponding to the plane interface are independent of the
corrugation and frequency of the incident waves,
(iii)
 the reflection and transmission coefficients of the irregularly reflected and transmitted qP- and qSV-waves
are proportional to the amplitude of the corrugated interface,
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(iv)
 the coefficients corresponding to the regularly reflected and transmitted qP-waves are found to increase
with an increase of initial stresses, while the coefficients of regularly reflected and transmitted qSV-waves
are found to decrease with an increase of initial stresses,
(v)
 the reflection and transmission coefficients corresponding to the irregularly qP- and qSV- waves are found
to decrease, in general, with an increase of initial stresses and
(vi)
 at grazing and normal incidences, no effect of initial stresses is observed on regularly reflected qP-, qSV-
waves and regularly transmitted qSV-waves. However, a significant effect of initial stress is noticed on
regularly transmitted qP-waves at normal incidence.
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